This program has been disqualified.
Author | rspk |
Submission date | 2013-04-26 23:13:45.227001 |
Rating | 6863 |
Matches played | 36 |
Win rate | 72.22 |
#simple history matcher
#uses P.0,1,and 2 from http://www.ofb.net/~egnor/iocaine.html and 3 history matching predictors
#licatj @ no-spam-pls rpi.edu
import random
wins = ['RS','SP','PR']
numMeta = 3 #num of meta strategies for each predictor
if input=='': #first round; initialize everything
myLastMove = 'X'
currSet = 0
score = 0
allMoves = [] #history of all moves made
myMoves = []
hisMoves = []
output = random.choice(['R','P','S'])
#initialize strategies
def hist(allMoves,type):
if len(allMoves) < 2:
#print "random"
return random.choice('RPS')
maxDepth = 400
maxLength = 20
#search backwards
candStart = len(allMoves)-2 #starting point of the current candidate being considered
currCand = candStart
currStr = len(allMoves)-1
bestStart = candStart
bestLen = 0
matchFound = False
while not matchFound: #search backwards
if currCand < 0:
break
#print "comparing %s and %s" % (allMoves[currCand],allMoves[currStr])
if allMoves[currCand] == allMoves[currStr]:
#print "same!"
currCand -= 1
currStr -= 1
if candStart-currCand > bestLen:
bestLen = candStart-currCand
bestStart = candStart
if bestLen >= maxLength:
matchFound = True
else:
#restart search
currStr = len(allMoves)-1
candStart -= 1
currCand = candStart
#print "best len was " + str(bestLen)
#print bestStart
#print "returning " + allMoves[bestStart+1]
#what we return depends on the format of the history provided
if type==0:
return allMoves[bestStart+1][0]
elif type==1:
return allMoves[bestStart+1][1]
else:
return allMoves[bestStart+1]
def histAll():
global allMoves
return hist(allMoves,1)
def histHis(): #only uses opponent's history
global hisMoves
return hist(hisMoves,2)
def histMines():
global myMoves
return hist(myMoves,2)
allStrats = [histAll,histMines] #all should return [a,b] where a is in [0,1] and b is 'R','P',or 'S'
allScores = []
allPredictions = []
for i in range(len(allStrats)*numMeta):
allScores.append(0)
allPredictions.append('X')
else:
allMoves.append(myLastMove + input)
myMoves.append(myLastMove)
hisMoves.append(input)
scoreChange = 0
if (myLastMove+input) in wins:
score += 1
scoreChange = 1
elif (input+myLastMove) in wins:
score -= 1
scoreChange = -1
if currSet >= 500 and score < 0:
output = random.choice(['R','P','S']) #resort to random strategy
else: #actually try something
output = 'R'
for i in range(len(allStrats)):
for j in range(i, i+numMeta):
if allPredictions[j] == input:
allScores[j] += 1
predBase = allStrats[i]() #update predictions:
jumpUp = {'R':'S', 'P':'R', 'S':'P'}
allPredictions[numMeta*i] = predBase #P.0 : assume they'll follow the move exactly predicted
allPredictions[numMeta*i+1] = jumpUp[predBase] #P.1 - assume they predict we'll try to beat predBase
allPredictions[numMeta*i+2] = jumpUp[jumpUp[predBase]] #P.2 - assume they predict we'll try to beat jumpUp[predBase]
#allPredictions[6*i+3] = #P'.0
#select the best one so far
i = allScores.index(max(allScores))
output = {'R':'P', 'P':'S', 'S':'R'}[allPredictions[i]]
#print "best strat is " + str(i)
#print allMoves
#print allScores
#print "next you'll choose " + allPredictions[i]
#output = 'R'
currSet += 1
myLastMove = output