This program has been disqualified.
Author | Jerry |
Submission date | 2012-11-19 21:45:19.598885 |
Rating | 5766 |
Matches played | 2 |
Win rate | 100.0 |
#email: schnej7@gmail.com
import random
import math
def beats( a ):
if a == 'R':
return 'P'
if a == 'P':
return 'S'
if a == 'S':
return 'R'
choices = list(['R','P','S'] )
num_algos = 7
depth1 = 1
depth2 = 4
depth3 = 4
depth4 = 2
depth5 = 3
depth6 = 1
depth7 = 4
history = 300
max_depth = max( list( [ depth1, depth2, depth3, depth4, depth5, depth6, depth7 ] ) )
class knn:
def __init__( self, a_k ):
self.k = a_k
self.d = []
def update( self, a_point, a_class ):
self.d.append( (a_point, a_class) )
if len( self.d ) > history / 5:
self.d.pop(0)
def predict( self, a_point ):
nearest = []
for (point, _class) in self.d:
if len(nearest) < self.k:
nearest.append( (point, _class, self.distance( a_point, point) ) )
nearest = sorted( nearest, key=lambda dist: dist[2] )
else:
dis = self.distance( a_point, point )
for i in range( self.k ):
if nearest[i][2] > dis:
nearest.insert( i, (point, _class, dis ) )
nearest.pop()
break
freq = dict()
for x in nearest:
if x[1] not in freq.keys():
freq[x[1]] = 1
else:
freq[x[1]] =+ 1
return freq
def distance( self, a, b ):
dis = float( 0 )
for i in range( len( a ) ):
dis += (float(a[i]) - float(b[i])) ** 2
return math.sqrt( dis )
class bootstrap:
def __init__( self, num ):
self.quality_history = []
self.guess_hist = []
self.rite_hist = []
self.prev = [None] * (num+1)
self.cur_qual = [0] * (num+1)
def update( self, actual_prev ):
rite_hist_row = []
for i in range( len(self.prev) ):
if self.prev[i] != None and self.prev[i] == actual_prev:
rite_hist_row.append( 1 )
self.cur_qual[i] += 1
elif self.prev[i] != None:
rite_hist_row.append( 0 )
else:
rite_hist_row.append( None )
self.rite_hist.append( rite_hist_row )
if len( self.rite_hist ) > history:
removing = self.rite_hist.pop( 0 )
for i in range( len(removing) ):
if removing[i] != None:
self.cur_qual[i] -= removing[i]
def quality( self, index ):
num_wins = self.cur_qual[index]
num_total = len( self.quality_history )
if num_total == 0:
return 0
return float( num_wins ) / float( num_total )
def predict( self, guesses ):
freq = dict()
for choice in choices:
freq[choice] = 0
legit_guess = False
quality_row = []
ave_quality = 0
if len( self.quality_history ) > 0:
prev_qualities = self.quality_history[-1][0:num_algos]
ave_quality = sum( prev_qualities ) / len( prev_qualities )
included = 0
for i in range( len(guesses) ):
quality_row.append( self.quality( i ) )
if guesses[i] != None:
legit_guess = True
if quality_row[-1] > ave_quality:
included += 1
freq[ guesses[i] ] += quality_row[-1]
self.prev[i] = guesses[i]
quality_row.append( self.quality( num_algos ) )
self.quality_history.append( quality_row )
#If no algorithm knows, then just guess
if not legit_guess:
return { 'R': float(1)/float(3), 'P': float(1)/float(3), 'S': float(1)/float(3) }
max_freq = max(freq.iterkeys(), key=lambda k: freq[k])
sum_freq = sum( freq.values() )
max_freq_val = freq[ max_freq ]
self.prev[ num_algos ] = max_freq
if sum_freq > 0:
self.guess_hist.append( max_freq_val / sum_freq )
for key in freq.keys():
freq[key] /= sum_freq
return freq
class marcov:
def __init__( self ):
self.hist_probs = dict()
def record( self, prev, cur ):
if prev not in self.hist_probs.keys():
self.hist_probs[prev] = dict()
self.hist_probs[prev][cur] = 1
elif cur not in self.hist_probs[prev].keys():
self.hist_probs[prev][cur] = 1
else:
self.hist_probs[prev][cur] += 1
def predict( self, cur ):
if cur not in self.hist_probs.keys():
return None
else:
return max(self.hist_probs[cur].iterkeys(), key=lambda k: self.hist_probs[cur][k])
if input == '':
turn = 0
boot = bootstrap( num_algos )
KNN = knn( 10 )
m1 = marcov()
m2 = marcov()
m3 = marcov()
m4 = marcov()
m5 = marcov()
m6 = marcov()
m7 = marcov()
output = 'R'
in_hist = list( ['x'] * max_depth )
out_hist = list( ['x'] * (max_depth) ) + ['R']
prev_probs = { 'R': float(1)/float(3), 'P': float(1)/float(3), 'S': float(1)/float(3) }
else:
turn += 1
guesses = [None] * num_algos
#record the last move
in_hist += list( input )
#train
#m1
depth_end1 = len( in_hist ) - ( 1 )
depth_begin1 = len( in_hist ) - ( depth1 + 1 )
prev1 = str( in_hist[ depth_begin1:depth_end1 ] ) + str( out_hist[ depth_begin1:depth_end1 ] )
cur_end1 = len( in_hist )
cur_begin1 = len( in_hist ) - ( depth1 )
cur1 = str( in_hist[ cur_begin1:cur_end1 ] ) + str( out_hist[ cur_begin1:cur_end1 ] )
m1.record( prev1, input )
guesses[0] = m1.predict( cur1 )
#m2
depth_end2 = len( in_hist ) - ( 1 )
depth_begin2 = len( in_hist ) - ( depth2 + 1 )
prev2 = str( in_hist[ depth_begin2:depth_end2 ] )
cur_end2 = len( in_hist )
cur_begin2 = len( in_hist ) - ( depth2 )
cur2 = str( in_hist[ cur_begin2:cur_end2 ] )
m2.record( prev2, input )
guesses[1] = m2.predict( cur2 )
#m3
depth_end3 = len( in_hist ) - ( 1 )
depth_begin3 = len( in_hist ) - ( depth3 + 1 )
prev3 = str( out_hist[ depth_begin3:depth_end3 ] )
cur_end3 = len( in_hist )
cur_begin3 = len( in_hist ) - ( depth3 )
cur3 = str( out_hist[ cur_begin3:cur_end3 ] )
m3.record( prev3, out_hist[-1] )
guesses[2] = beats( m3.predict( cur3 ) )
#m4
depth_end4 = len( in_hist ) - ( 1 )
depth_begin4 = len( in_hist ) - ( depth4 + 1 )
prev4 = str( in_hist[ depth_begin4:depth_end4 ] ) + str( out_hist[ depth_begin4:depth_end4 ] )
cur_end4 = len( in_hist )
cur_begin4 = len( in_hist ) - ( depth4 )
cur4 = str( in_hist[ depth_begin4:depth_end4 ] ) + str( out_hist[ cur_begin4:cur_end4 ] )
m4.record( prev4, input )
guesses[3] = m4.predict( cur4 )
#m5
depth_end5 = len( in_hist ) - ( 1 )
depth_begin5 = len( in_hist ) - ( depth5 + 1 )
prev5 = str( out_hist[ depth_begin5:depth_end5 ] )
cur_end5 = len( in_hist )
cur_begin5 = len( in_hist ) - ( depth5 )
cur5 = str( out_hist[ cur_begin5:cur_end5 ] )
m5.record( prev5, out_hist[-1] )
guesses[4] = beats( m5.predict( cur5 ) )
#m6
depth_end6 = len( in_hist ) - ( 1 )
depth_begin6 = len( in_hist ) - ( depth6 + 1 )
prev6 = str( in_hist[ depth_begin6:depth_end6 ] ) + str( out_hist[ depth_begin6:depth_end6 ] )
cur_end6 = len( in_hist )
cur_begin6 = len( in_hist ) - ( depth6 )
cur6 = str( in_hist[ cur_begin6:cur_end6 ] ) + str( out_hist[ cur_begin6:cur_end6 ] )
m6.record( prev6, out_hist[-1] )
guesses[5] = beats( m6.predict( cur6 ) )
#m7
depth_end7 = len( in_hist ) - ( 1 )
depth_begin7 = len( in_hist ) - ( depth7 + 1 )
prev7 = str( in_hist[ depth_begin7:depth_end7 ] )
cur_end7 = len( in_hist )
cur_begin7 = len( in_hist ) - ( depth7 )
cur7 = str( in_hist[ cur_begin7:cur_end7 ] )
m7.record( prev7, out_hist[-1])
guesses[6] = beats( m7.predict( cur7 ) )
#guess
#boost on all marcov chains
boot.update( input )
probs = boot.predict( guesses )
templist = []
for choice in choices:
templist.append( prev_probs[choice] )
if turn > 50:
KNN.update( templist, input )
if turn > 100:
templist = []
for choice in choices:
templist.append( probs[choice] )
adjust = KNN.predict( templist )
for choice in choices:
if choice not in probs.keys() and choice not in adjust.keys():
probs[choice] = 0
elif choice not in probs.keys():
probs[choice] = adjust[choice] / 2.0
elif choice not in adjust.keys():
probs[choice] /= 2.0
else:
probs[choice] = ( probs[choice] + adjust[choice] ) / 2.0
output = beats( max(probs.iterkeys(), key=lambda k: probs[k]) )
prev_probs = probs
#record guess
out_hist += list( output )