This program has been disqualified.
Author | momo |
Submission date | 2011-09-05 08:34:33.676237 |
Rating | 7230 |
Matches played | 117 |
Win rate | 72.65 |
import random, math
# the kinds of nonstandard predictors: a backwards looking fading markov chain, a dalton board rfind and a squad of 10 hennies
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def lowest(v):
return random.choice([i for i in range(len(v)) if min(v) == v[i]])
def best(c):
return highest([c[1]-c[2], c[2]-c[0], c[0]-c[1]])
def mean(c):
return sum(c)/length(c)
# alpha in [0,1]: greediness
def attack(yo, tu, alpha):
r = res[yo][tu]
p1 = yo
if r == -1:
p1 = (yo + 1) % 3
elif r == 0 and random.random() < alpha:
p1 = (yo + 2) % 3
return p1
if(1):
if (input == ""):
N = 1
AR1 = .85#0.85
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
alpha = .1
alpha2 = .1
table = {}
cutoff = 200
fade = 0.01
decay1 = 0.98
decay2 = 0.5
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
total=0
r=0
MEM = [4,5] # 3, 5
MEM2 = [4,5]
hennies = [10] # 10
M1 = len(MEM)*3
M2 = len(MEM2)*2
M3 = len(hennies)*1
M = M1 + M2 + M3
models = [1,1,1,1,1,1,1,1,1]*1 + [1,1,1,.2,.2,.2,.2,.2,.2]*1 + [1,0.3,0.3]*(M2)+ [1,0.25,0.25]*M3 #[1,0.5,0.5] #[1]*(M*3+1)
state = [0] * (M*3)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
hiyt = states[yo]+states[tu]
prognosis = [random.choice(st) for i in range(M*3+1)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
hiyt += states[yo]+states[tu]
state = [ AR1 * state[i] + res[prognosis[i]][tu] * models[i] for i in range(M*3)]
r = res[yo][tu]
total = total + r
# Predictor: Backwards looking markov chain
count = [[[0,0,0],[0,0,0],[0,0,0],[0,0,0]],[[0,0,0],[0,0,0],[0,0,0],[0,0,0]],[[0,0,0],[0,0,0],[0,0,0],[0,0,0]]]
for m in range(len(MEM)):
mem = MEM[m]
if (N > mem + 1):
p = hi[N-mem-1:N-1]
s = hi[N-mem-2]
key0 = p
for key in [key0, [(i[0],-1) for i in key0], [ (-1,i[1]) for i in key0]]:
k = tuple([s] + key)
weight = 1+N*fade
if (k in table): table[k] = weight
else: table[k]= weight
for y in st:
for t in st:
key0 = p
for key in [key0, [(i[0],-1) for i in key0], [(-1,i[1]) for i in key0]]:
k = tuple([(y,t)] + key)
if (k in table):
z = table[k]
count[m][0][y] += z
count[m][1][t] += z
countagg = [[],[],[],[],[],[],[],[],[]]
for m in range(len(MEM)):
countagg[m] = [[count[m][0][i] + count[m][1][(i+0)% 3] for i in st]]
countagg[m] += [[count[m][0][i] + count[m][1][(i+1)% 3] for i in st]]
countagg[m] += [[count[m][0][i] + count[m][1][(i+2)% 3] for i in st]]
i = 0
#Prectictor "Dalton board"
prop = [random.choice(st) for j in range(len(MEM2)*2)]
for m in MEM2:
if(N > m):
key = hiyt[-2*m:]
pos = N*2 - m*2
if (random.random() < decay1):
while 1:
pos = hiyt.rfind(key,max(0, 2*(N-cutoff)),pos)
if pos > 1:
prop[i] = sdic[hiyt[pos + 2*m]]
prop[i+1] = sdic[hiyt[pos + 2*m+1]]
else:
break
if (random.random() < decay2): break
i += 2
i = -3;
for m in range(len(MEM)):
i += 3; prognosis[i] = best(countagg[m][0])
i += 3; prognosis[i] = best(countagg[m][1])
i += 3; prognosis[i] = best(countagg[m][2])
for m in range(len(MEM2)):
# i += 3; prognosis[i] = (prop[m]+1) % 3
i += 3; prognosis[i] = attack(prop[m],prop[m+1], alpha)
i += 3; prognosis[i] = attack(prop[m],prop[m+1], 1-alpha)
# Predictor: "squad of hennies"
#if 0:
for h in hennies:
if h > 1:
prob = [0,0,0]
for j in range(h):
k = max(random.choice(range(N)),random.choice(range(N)))
prob[(hi[k][1])]+=1
i += 3; prognosis[i] = (best(prob))
else:
k = max(random.choice(range(N)),random.choice(range(N)))
p1 = attack(hi[k][0], hi[k][1], alpha2)
p2 = (hi[k][1] + 2) % 3
i += 3; prognosis[i] = p1
#i += 3; prognosis[i] = p2
i += 3; assert(i==3*M)
for j in range(M):
prognosis[j*3 + 1] = (prognosis[j*3] + 1) % 3
prognosis[j*3 + 2] = (prognosis[j*3+1] + 1) % 3
best = highest(state)
yo = prognosis[best]
output = states[yo]
N = N + 1