This program has been disqualified.
Author | Micah |
Submission date | 2011-06-12 23:01:50.546904 |
Rating | 2001 |
Matches played | 5027 |
Win rate | 20.51 |
import random
from collections import defaultdict
class TieredMarkov:
def __init__(self, order, dampen):
self.order = order
self.dampen = dampen
self.chains = [NMarkov(i+1) for i in range(0,order)]
def dump_data(self):
return [chain.dump_data() for chain in self.chains]
def get_counts(self, state):
counts = [self.chains[i].get_counts(state) for i in range(0,self.order)]
keys = set(key for d in counts for key in d.keys())
merged = dict((key, sum(counts[i].get(key,0) * self.dampen ** i for i in range(len(counts)))) for key in keys)
return merged
def add_point(self, state, next, weight=1):
[chain.add_point(state, next, weight) for chain in self.chains]
class NMarkov:
def __init__(self, order):
self.order = order
self.state_counts_map = {}
def dump_data(self):
return self.state_counts_map
def get_key(self, state):
return str(state[-self.order:])
def get_counts(self, state):
key = self.get_key(state)
if key not in self.state_counts_map:
return {}
return self.state_counts_map[key]
def add_point(self, state, next, weight=1):
state = state[-self.order:]
if len(state) == self.order:
key = self.get_key(state)
if key not in self.state_counts_map:
self.state_counts_map[key] = {}
counts = self.state_counts_map[key]
if next not in counts:
counts[next] = 0
counts[next] += 1
class MarkovFeeder:
def __init__(self, markov):
self.markov = markov
self.history = []
def dump_data(self):
return self.markov.dump_data()
def add_point(self, input, output):
self.history.append(input)
self.markov.add_point(self.history, output)
def get_counts(self, state):
return self.markov.get_counts(state)
class RPSPatternMatcher:
def __init__(self, order):
self.order = order
self.combined_response = MarkovFeeder(TieredMarkov(order, 9))
self.victory_response = MarkovFeeder(TieredMarkov(order, 27))
self.opponent_response = MarkovFeeder(TieredMarkov(order, 27))
self.history = []
self.prediction_history = []
self.confidence_history = []
self.randomness = 1
def dump_data(self):
return [ self.combined_response.dump_data()
, self.victory_response.dump_data()
, self.opponent_response.dump_data()]
def register_throw(self,our_throw, opponent_throw):
if self.history:
weight = 2 ** (len(self.history) / 30)
our_last, opponent_last = self.history[-1]
self.combined_response.add_point(our_last * 3 + opponent_last, opponent_throw)
self.victory_response.add_point((opponent_last - our_last + 3) % 3, (opponent_throw - opponent_last + 3) % 3)
self.opponent_response.add_point(opponent_last, opponent_throw)
self.prediction_history.append((self.prediction - opponent_throw + 1) % 3 - 1)
self.confidence_history.append(self.confidence)
self.history.append((our_throw, opponent_throw))
def next_throw(self):
our_last, opponent_last = self.history[-1]
victory_offset_counts = self.victory_response.get_counts([(b - a + 3) % 3 for a,b in self.history[-self.order:]])
victory_counts = dict(((opponent_last + key + 3) % 3, val) for key, val in victory_offset_counts.items())
combined_counts = dict((key, val*3) for key, val in
self.combined_response.get_counts([a*3 + b for a,b in self.history[-self.order:]]).items())
opponent_counts = self.opponent_response.get_counts([b for a,b in self.history[-self.order:]])
d_list = [ victory_counts
, combined_counts
, opponent_counts
]
total_counts = [sum(d.get(i,0) for d in d_list) for i in range(3)]
if self.prediction_history and len(self.prediction_history) % 15 == 0:
prob_score = sum([p * c for c,p in zip(self.confidence_history, self.prediction_history)][-30:])
sign = 1 if prob_score >= 0 else -1
val = abs(prob_score)
weight = val / (2 + val)
self.randomness = max(0,min(1, 1 - (weight * sign)))
total_scores = [max(0,total_counts[(i+2)%3] - total_counts[(i+1)%3]) for i in range(3)]
self.prediction = total_scores.index(max(total_scores))
self.confidence = max(total_scores) / max(sum(total_scores),1)
if sum(total_counts) == 0:
return random.choice(range(3))
dampen = self.randomness * sum(total_scores) * (1-self.confidence)
total_scores = [i * (1-self.randomness) * self.confidence + dampen for i in total_scores]
rand = random.random() * sum(total_scores)
for i, weight in enumerate(total_scores):
rand -= weight
if rand <= 0:
return i
if input == "":
types = ["R", "P", "S"]
matcher = RPSPatternMatcher(4)
last_throw = 0
r = random.random()
random.seed(r)
if input in types:
matcher.register_throw(last_throw, types.index(input))
last_throw = matcher.next_throw()
else:
last_throw = random.choice(range(3))
output = types[last_throw]
# just curious...
r = random.random()
random.seed(0)