This program has been disqualified.
Author | momo |
Submission date | 2011-06-18 09:18:22.767246 |
Rating | 7402 |
Matches played | 2203 |
Win rate | 71.22 |
import random
def highest(v):
return random.choice([i for i in range(len(v)) if max(v) == v[i]])
def lowest(v):
return random.choice([i for i in range(len(v)) if min(v) == v[i]])
def best(c):
return highest([c[1]-c[2], c[2]-c[0], c[0]-c[1]])
def seqfreq(hi, l):
N = len(hi)
count = [[0,0,0],[0,0,0]]
a = 0
b = 0
for pos in range(max(l, N-cutoff), N):
j = 0
inc = 1 + (pos * decay)
while (hi[pos-j] == hi[N-1 - j]) and j < l:
j += 1
if (j == l):
count[0][hi[pos-j][0]] += inc
count[1][(hi[pos-j][1]+a)%3] += inc
j0 = j
while (hi[pos-j][0] == hi[N-1 - j][0]) and j < l:
j += 1
if (j == l):
count[0][hi[pos-j][0]] += inc
count[1][(hi[pos-j][1]+a)%3] += inc
j = j0
while (hi[pos-j][1] == hi[N-1 - j][1]) and j < l:
j += 1
if (j == l):
count[0][hi[pos-j][0]] += inc
count[1][(hi[pos-j][1]+a)%3] += inc
return count
if (1):
if (input == ""):
N = 1
L = 4
cutoff = 320
AR1 = 0.88 #0.85
states = ["R","S","P"]
st = [0,1,2]
sdic = {"R":0, "S":1, "P":2}
decay = 0.001
decay2 = 0.5
res = [[0, 1, -1], [-1, 0, 1], [1, -1, 0]]
total=0
r=0
M = 3
models = [1]*(M*3+1)
state = [1]*(M*3+1)
yo = random.choice(st)
tu = random.choice(st)
pa = (yo, tu)
hi = [pa]
prognosis = [random.choice(st) for i in range(M*3+1)]
choices = []
else:
tu = sdic[input]
pa = (yo,tu)
hi += [pa]
state = [ AR1 * state[i] + res[prognosis[i]][tu] * models[i] for i in range(M*3+1)]
r = res[yo][tu]
total = total + r
count0 = seqfreq(hi, L)
count = [[count0[0][i] + count0[1][(i+0)% 3] for i in st]]
count += [[count0[0][i] + count0[1][(i+1)% 3] for i in st]]
count += [[count0[0][i] + count0[1][(i+2)% 3] for i in st]]
i = 0; prognosis[i] = best(count[0])
i += 3; prognosis[i] = best(count[1])
i += 3; prognosis[i] = best(count[2])
assert(i+3==3*M)
# modelrandom
prognosis[3*M] = random.choice(st)
for i in range(M):
prognosis[i*3 + 1] = (prognosis[i*3] + 1) % 3
prognosis[i*3 + 2] = (prognosis[i*3+1] + 1) % 3
if(random.choice([0,1])): thebest = highest(state[0:-1])
else:
thebest = highest(state)
choices += [thebest]
yo = prognosis[thebest]
output = states[yo]
N = N + 1