This program has been disqualified.
Author | david.werecat |
Submission date | 2014-12-13 01:06:31.417094 |
Rating | 6339 |
Matches played | 4 |
Win rate | 100.0 |
#Created by David Catt on December 12, 2014
import random
class CtxMap:
def __init__(self, order):
self.order = order
self.mask = 3 ** order
self.prob = [random.randint(0, 2) for a in range(0, self.mask)]
self.ctx = 0
def predict(self):
return self.prob[self.ctx]
def update(self, cvl, val):
self.prob[self.ctx] = val
self.ctx = ((self.ctx * 3) + cvl) % self.mask
def nxtctx(self, cvl):
self.ctx = ((self.ctx * 3) + cvl) % self.mask
class CtxModel:
def __init__(self, order, decay):
self.order = order
self.decay = decay
self.mask = 3 ** (order + 1)
self.prob = [0.0] * self.mask
self.ctx = 0
def predict(self):
tvl = 0
tpr = 0.0
prb = 0.0
for i in range(0, 3):
prb = self.prob[self.ctx + i]
if prb > tpr:
tvl = i
tpr = prb
return tvl
def update(self, cvl, val):
for i in range(0, 3):
self.prob[self.ctx + i] *= self.decay
self.prob[self.ctx + val] += 1.0
self.ctx = ((self.ctx + cvl) * 3) % self.mask
def nxtctx(self, cvl):
self.ctx = ((self.ctx + cvl) * 3) % self.mask
class ModelSwitch:
def __init__(self, count, decay):
self.value = [1,0,-1,-1,1,0,0,-1,1]
self.count = count
self.decay = decay
self.offset = [0.0] * count
self.weigh = [0.0] * count
self.pred = [0] * count
def setoffset(self, idx, val):
self.offset[idx] = val
def setvalue(self, idx, val):
self.pred[idx] = val
def predict(self):
tvl = 0
tpr = -1.0
prb = 0.0
for i in range(0, self.count):
prb = self.weigh[i] + self.offset[i]
if prb > tpr:
tvl = self.pred[i]
tpr = prb
return tvl
def update(self, val):
for i in range(0, self.count):
self.weigh[i] = (self.weigh[i] * self.decay) + self.value[(val * 3) + self.pred[i]]
if input == "":
winner = [1,2,0]
nval = {"R":0,"P":1,"S":2,"":0}
cval = ["R","P","S"]
amdl = [CtxMap((i % 6) + 1) if i < 24 else CtxMap((((i - 24) % 4) + 1) * 2) for i in range(0, 32)]
omdl = [CtxModel((i % 6) + 1, 0.93) if i < 24 else CtxModel((((i - 24) % 4) + 1) * 2, 0.93) for i in range(0, 32)]
zmdl = [CtxModel(0, 0.93), CtxModel(0, 0.93)]
msse = ModelSwitch(208, 0.93)
msse.setoffset(204, -0.1)
msse.setvalue(205, 0)
msse.setvalue(206, 1)
msse.setvalue(207, 2)
lval = 0
else:
val = nval[input]
for i in range(0, 6):
amdl[i].update(val, val)
amdl[i+6].update(lval, val)
amdl[i+12].update(val, lval)
amdl[i+18].update(lval, lval)
omdl[i].update(val, val)
omdl[i+6].update(lval, val)
omdl[i+12].update(val, lval)
omdl[i+18].update(lval, lval)
for i in range(24, 28):
amdl[i].nxtctx(val)
amdl[i].update(lval, val)
amdl[i+4].nxtctx(val)
amdl[i+4].update(lval, lval)
omdl[i].nxtctx(val)
omdl[i].update(lval, val)
omdl[i+4].nxtctx(val)
omdl[i+4].update(lval, lval)
zmdl[0].update(val, val)
zmdl[1].update(val, lval)
msse.update(val)
pv = 0
for i in range(0, 32):
pv = amdl[i].predict()
msse.setvalue(i, pv)
msse.setvalue(i + 32, winner[pv])
msse.setvalue(i + 64, winner[winner[pv]])
pv = omdl[i].predict()
msse.setvalue(i + 96, pv)
msse.setvalue(i + 128, winner[pv])
msse.setvalue(i + 160, winner[winner[pv]])
pv = zmdl[0].predict()
msse.setvalue(192, pv)
msse.setvalue(193, winner[pv])
msse.setvalue(194, winner[winner[pv]])
pv = zmdl[1].predict()
msse.setvalue(195, pv)
msse.setvalue(196, winner[pv])
msse.setvalue(197, winner[winner[pv]])
pv = nval[input]
msse.setvalue(198, pv)
msse.setvalue(199, winner[pv])
msse.setvalue(200, winner[winner[pv]])
pv = lval
msse.setvalue(201, pv)
msse.setvalue(202, winner[pv])
msse.setvalue(203, winner[winner[pv]])
msse.setvalue(204, random.randint(0, 2))
lval = winner[msse.predict()]
output = cval[lval]